0-7803-7632-3/02/$17.00 ©2002 IEEE

A Passive Method for Estimating Ead-to-End TCP Packet Loss

Peter Benko and Andras Veres

Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary
{Peter.Benko, Andras.Veres}@eth.ericsson.se

Abstract-This paper presents a passive end-to-end loss
monitering method, which relies on traffic menitering at a core
or ingress router interface. The monitoring node captures the
packets of TCP connections generated by end-hosts. Based on
the seen sequence number pattern the lass ratios are estimated
for the two segments of end-to-end path divided by the monitor.
This feature is especially useful if the monitoring node is placed
at the border of an autenomous system, e.g., at the egress point
of an ISP, When applied to mobile Internet access, packet losses
on the radio interface can be distinguished from losses in the
core network or in the public Internet. The packet loss
estimation algorithm is rigorously validated using simulations
and testbed measurements, Additionally, measurement results
and an application example in a dial-up ISP are presented.

[. INTRODUCTION

Packet loss ratio is one of the most important Key
Performance Indicators (KPI) for an Intemet Service Provider
(ISP). 1t is especially important if the ISP offers business
grade services-with performance guarantees. Although most
ISPs collect statistics about packet losses from the routers,
this information provides only a “local” view. The problem
with collecting statistics from the routers is twofold. On the
one hand, summing up per-hop counters does not necessarily
yield the end-to-end loss. On the other hand, an ISP has
control over only a single segment (e.g., over an Autonomous
System) of the end-to-end connection, therefore its managing
horizon i8 limited.

TCP, the dominant protocol in the Internet [1], includes a
complex adaptive algorithm, which ensures reliable data
transfer over unreliable paths. There have been a number of
papers published analyzing how the path characteristics (e.g.,
loss) affect TCP dynamics [2][5][6]. Our paper discusses the
inverse problem: by observing TCP dynamics we infer the
loss properties of the end-to-end path. An existing tool, Tstat
[7] addresses a similar problem, but it measures the number
.of TCP retransmissions, which is not equal to the loss ratio.

In this paper a method is described, which can be used by
ISPs to efficientlty monitor the end-to-end loss ratios of
individual TCP connections or traffic aggregates. A passive
monitor listens to TCP packets on the data flow direction.
The algorithm running in the monitor estimates the packet
loss ratios separately for the two end-to-end path segments
separated by the monitoring point. Since loss estimation is
performed on a per-TCP basis, the direction and the location
of the problem can be deduced.

The packet loss estimation algorithm can provide the
operator with the following valuable information:

» _If the end-to-end loss ratio satisfies the service level

agreements,

e or there is a problem on a particular path in the ISPs

own domain,

e and/or there is a problem on a particular path in the

outside Internet.

The described method is based on heuristics that aim to
estimate the most probable sampte path of the TCP state-
machines in the two communicating end-hosts. We explain
these heuristics in detail with examples. Since heuristics
always lack a general proof, we explore a large portion of the
practically relevant state space by simulations. In addition,
the algorithm is evaluated in a testbed. We analyze the
precision of the algorithm by performing several thousands of
transactions for each configuration. The outcome of the
analyses is that the algorithm is capable of estimating the
packet loss ratio for both path segments independently of the
position of the losses with reasonably high precision. The
analyses cover the practical ranges of loss ratios from 0.1% to
10%.

There are several versions of TCP using different
congestion control algorithms, which apply different rules to
cope with packet losses. A comparative analysis can be found
in [3] and in [4]. We found that the precision of the algorithm
is acceptable for all TCP versions used in practice. Due to the
space limitations, the results of these simulations are not
discussed in detail in the paper.

The paper is organized as follows: we sketch a “naive’ loss
estimation algorithm in Section II. After identifying its
limitations, an improved algorithm is presented in Section II1,
which tries to solve the problems of the “naive™ algorithm. A
rigorous evaluation of the improved algorithm is presented in
Section 1V. To demonstrate its feasibility, Section V reports
measurement results from an operational ISP network. We
conclude the paper in Section V1.

I A “NAIVE” L0SS ESTIMATION ALGGRITHM
The monitering point divides the network into two segments

loss before “M"”

loss after “M”

Measurernent
point “M”

=nwnma data flow direction

Fig. 1. The measurement scenario

2609

as shown in Fig. 1. The client in network “B” downloads a
file from the server in network “A” by opening a TCP
connection. The packets flow through the measurement point
“M”, which lies at the border of network “B” and network
“A”. The task of “M” is to estimate the end-to-end TCP
packet loss ratio between the server and the client by
examining the sequence numbers of the packets belonging to
the TCP connection. Although observing acknowledgment
packets would help estimating losses, we chose not to use
them. The reason is that due to asymmetric routing, data
packets and acknowledgements often traverse different paths.

In the following, we identify a few basic, simple rules that
can be used to detect the losses. First, we classify packet
losses by the location of the loss. A packet can be lost either
before reaching the measurement point (i.e., in network “A”),
or after passing it (in network “B”™). Fig. 2 shows a sample
TCP sequence number pattern seen at the measuremert point,
illustrating the characteristic effects of packet losses.

A packet loss before the measurement point can be
detected at point “M” by observing an out-of-ordsr TCP
segment that “fills a hole” in the data sequence (in Fig. 2,
segment S; fills the hole caused by the loss of segment S,).
Similarly, a repeated sequence number may signal that a
packet is lost after passing the measurement point. This can
be seen in Fig. 2 where the retransmitted segment S repeats
the sequence number of the lost segment S;.

Based on these observations, an initial, “naive” algorithm
can be constructed that detects packet losses by maintaining a
history of sequence numbers seen and comparing whether a
packet has been seen or it fills a hole. Although this algorithm
is obviously simplistic, the used heuristics guess packet
losses correctly in a wide range of practical cases.

In order to evaluate its precision, we implemented the
algorithm and tested it on packet traces obtained from
simulations. The simulation setup consisted of just three
nodes; the Server, the Client, and the Monitor “M”. The delay
and link rate was set to 100 ms and 64 kbps for both
segments respectively. We simulated the NewReno version of
TCP [3].

During the simulation, the client opened subsequent TCP
connections to download a fixed length file from the server
(the maximum window size was set to 64 Kbytes). Packets
were dropped independently and with equal probability on
both path segments (in Network “A” and in Network “B”).

A loss in
network “B” X

3

E

=1

=

Q

[¥)

=

o

=]

g ", 1 3
Nas . lossin

network “A”

>
time
Fig. 2. Detecting packet loss from the sequence number pattern

relative error of estimation

= fllasize 18 Kbytes.loss bafore "M™ !
-8~ filgglze 16 Kbytes,losy after "M" !
+= - fllazlra 200 loss bafore "M

Kbytes,
o -3 - flesize 200 Kg.m after "M" .

-1 -2 1

10

10
packet loss probability
Fig. 3. Simulation results for the “naive™ algorithm

The relative error of the packet loss estimation algorithm was
calculated and plotted against the loss probability ranging
between 0.1% and 10%, see Fig. 3.

The simulation results show that the error of loss ratio
estimation after the measurement point was higher for large
files. Additicnally, in case of estimating packet losses before
the measurement point, the algorithm is less accurate for
small files. In the extreme worst case, the relative error of the
algorithm reached 10, which means that the absolute error
was approximately 1%. Although in absolute values this error
does not seem to be too high, in many practical Internet
configurations, packet losses below 1% should also be
possible to monitor.

HI. IMPROVED ALGORITHM FOR TCP PACKET LOss
ESTIMATION

The reason why the previously described simple algotithm
makes numerous ertors is that packet losses, depending on
when and where they happen, may result in a large variety of
sequence number patterns not covered by the algorithm.
Muitiple losses within the same window, different versions
(Tahoe, Reno) and implementations of TCP also increase the
compiexity of the problem.

In the measurement point “M”, it would be teo difficult -
and in most cases even impossible - to take all possible
sequence number sample paths into consideration. In the
following, instead of pursuing this, we try to identify the
scenarios that play an mportant role for packet loss ratic
estimation.

We found that four major effects can explain the
inaccuracy of the algorithm;

1. Spurious timeouts: In case of a sudden rise in the
round-trip time, a TCP sender may timeout even if no
packet loss has occurred. The sender then retransmits the
segment believed to be lost and waits for its
acknowledgement. When the acknowledgement for the
original segment arrives, all subsequent segments will be
retransmitied. The loss estimation algorithm will then
incorrectly assume that the repeated segments are
retransmissions of lost packets. This effect can explain

2610

the significant error seen in the case of packet loss
estimation after the measurement point (see Fig. 3).

2. Mass losses: If an entire window of data is lost before
reaching the measurement point, the algorithm will be
unable to defect it because of the missing out of order
segments at point “M”. That is, the algotithm will not see
the “hole” to be filled and will not recognize the
retransmissions. Since this effect is more likely to
happen if the window size is small (e.g., just after
opening a connection, or afier a timeout), it can account
for the error experienced for small files (see Fig. 3).

3. Load balancing: If per-packet load balancing is applied,
the packets traverse different paths thus the monitoring
point may not see all packets. The heles are erroneously
interpreted as indications of losses before the monitoring
point. .

4. Reordering: Packet reordering may happen if the
monitoring point is after the merging point of load
balancing paths. In this case, the algorithm erroneously
assumes that the holes in the sequence numbers are
indications of packet losses before the monitoring peint.

Besides the above-mentioned causes and symptoms, there
can be additional cases where the simple estimation algorithm
fails to detect losses precisely. In order to improve the
algorithm, it is essential to realize that we are not interested in
determining the exact number of lost packets; we only need
to calculate the Joss raric instead. The idea is then to choose a
subset of packets for which it can be determined, with
relatively high probability, whether and where the packets
were lost. We call these packets significant packets. The
estimation is unbiased if packet losses happen independently,
that is, the loss ratio of significant packets is equal to the loss
ratio of all packets, Although the algorithm is based on a
decreased number of packets, the significant packet set is
expected to be large enough for estimating the loss ratio.

The set of significant packets is constructed by
disregarding packets for which the loss detection would be
too uncertain. In our algorithm, 2 significant packet is the
packet that holds a particular data segment for the first time.
In other words, retransmissions of a data segment are not
considered to be significant. This is because the loss of a first
transmission can be detected with quite high probability
based on the retransmissions seen at the measurement point,
but the loss of the retransmission itself is hard to recognize.

In order to cope with the problem of losing an entire
window of data, we also have to exclude the fitst and the last
data segment of a TCP connection when estimating packet
loss before the measutement point. The reason for this is that
if the first transmission of these segments is lost before “M”,
they are not seen at all. This solution is expected to increase
the precision of the loss estimation before the measurement
point.

We improved the algorithm further by making it capable of
excluding the effect of spurious timeouts. This is achieved by
continuously searching the history for segments that are

2611

believed to be lost in a row. If the number of consecutive
segments lost exceeds a pre-defined threshold (e.g., three),
the algorithm assumes that a spurious timeout has occurred
and removes all the questioned segments from the significant
packet set. This solution is expected to increase the precision
of the loss estimation after the measurement point.

When the monitoring point detects that it has not seen all
the packets of a successfully ended TCP connection, it
assumes that load balancing was applied for the flow, and
removes the packets from the significant set. This solves
problem 3.

In order to deal with the last problem, namely reordering,
the packets that have likely been reordered are also removed
from the significant set. A reliable detection of reordering can
be based on observing the /P Id field in the IP header of
consecutive packets. Although there are several different
ways how operating systems set this field, most of them
increase the IP Id value with every packet sent in a TCP
connection (Windows 95/98/NT/2000, most Linux, FreeBSD
versions, and Solaris as of today). That is, if we observe a
decrease, it is likety due to reordering on the path.

IV. ANALYSIS OF THE IMPROVED ALGORITHM

In order to check how these improvements influence the
precision of the algorithm, we carried out simulations with
the same setup as shown in Fig. 1. We were interested in the
relative error of the estimation under various parameter sets.
We define the relative error as the abselute difference of the
estimated loss and the real loss divided by the real loss ratic:

error, =|10ssrm! lossz:n'mmd (1)
loss, .,

Since the algorithm is based on heuristics, to prove its

applicability, a rigorous test has been performed covering a

large portion of the practically relevant parameter space.

In Fig. 4 an example of our results can be seen. The first
row shows the results for the loss estimation for the path
segment before “M”, while the second row shows them for
after “M”. In each column a different version of the
estimation algorithm is used. The first is the basic algorithm,
described in section II. The second and the third are the
improved algorithms without and with spurtous timeout
detection, respectively. The plots show a heat map
demonstrating the dependence of the relative etror on the file
size and on the packet loss probability. Darker colors stand
for higher errors.)

It can be seen that the relative error of the basic algorithm
is below 20% at the majority of the parameter space. It is
worth noting that although the relative error of the loss ratio
estimation after “M” can be high at small loss ratios, the
absolute error may be still low (i.e., a relative error of 5
stands for a 0.5% absolute loss ratio difference at a loss
probability of 0.001).

As we look at the graphs from left to right, we can see that
there are characteristic changes and significant improvements

“paive"” algorithm

significant set-based algorithm

significant set-based algorithm with spurious

timeout detection
- , :
y 10 10
u 10
e I F g
& E RF £
E £ SFP ; g
E 210" 2o’ 210
k: .
£ - et —
g ‘o’ =] e 4 = 1 lo' .l - * : =3 SR 1 10 -3 -7 1
t0 10 ' 1o 10 10 10 10 10
packat kes probability packat kiss probabllity packet koss probabiity
—
: ’D‘m"
H 1%
=
5 = -
]] [
c E E
P :
- £ 2 104
g
o
g STP
% 3|
® 10
w? w0t e w0 [T w? o 107
packet kass probability packet loss probabilty packet loss probabilty
Fig.4. Simulation results with different algorithms
in each step. retransmission timeout (RTO) timer may be calculated

Comparing the graphs on the left with the middle graphs,
the most important change is that the error of the loss
estimation before “M” is almost completely vanished for
large toss ratios (“Retransmission Problem™, RP area in Fig.
4). This is due to the introduction of the significant set, which
improved the estimation when there are considerable amount
of multiple or mass losses. We can also note that removing
the first and the last segment of a TCP connection from the
significant set decreased the estimation error for short files.
However, the error for extremely short files is still present,
because a loss before “M” can be detected only for file sizes
exceeding two maximum segment sizes (mss). (“Short File
Problem”, SFP area in Fig. 4).

The largest error is for the loss ratio estimation after “M”
in case of large files and small loss probabilities, for which
the left and middle graphs show no improvement. This large
error is due to retransmissions caused by spurious timeouts.
When the loss ratio is low, there is a higher probability for
the congestion window to open up. As a consequence, when a
spurious timeout occurs, more packets will be retransmitted,
which increases the estimation error (“Spurious Timeout
Problem™, STP area in Fig. 4). By removing packets from the
significant set that would indicate consecutive losses, the
precision of the algorithm can be significantly improved. This
can be observed on the right bottom graph. An interesting
phenomenon is that the error resulting from spurious timeouts
decreases for large files. This can be explained by the fact
that spurious timeouts tend to occur at the start of a TCP
connection. When a new connection is opened, TCP has no
information on the round-tip time, therefore its

incorrectly.

Fig. 5 shows the sensitivity of the algorithm to different
levels of asymmetry of the packet loss probabilities before
and after “M”. The values range between 0.1-10%. For the
investigated file sizes 16 Kbytes and 200 Kbytes the
estimation error was negligible for the loss ratio before “M”.
(This is why only the results for the side afier “M™ are
shown.) The loss estimation error is higher if the file size is
larger, and when the loss probabilities before and after “M”
differ significantly. The largest error is measured in the
extreme case when the loss ratio is 10% before “M™ and 0.1%
after “M”,

Further tests have been performed for several TCP versions
(Tahoe, NewReno) and in case of correlated losses. For the
practically important configurations, the relative error was
below 10% for 90% of the loss state space.

Y. TESTBED AND ISP RESULTS

We built a testbed to analyze the algorithm in a controiled,
but real environment. The testbed consists of Linux PCs
interconnected by a 100 Mbps Ethernet hub. Between the
server and the client hosts, the user can configure the link
rate, packet delay and random packet loss. We used a
modified shaper kernel module and the NIST Net [9] program
to set the desired parameters for the network segments before
and after the monitoring host.

The same configuration was tested as we used for the
simulations. The loss probabilities before “M” were set
gradualiy from 0.12% to 10%, the less altét “M™ was set to

2612

Loss procability aftar “V°
-]

a =

10
Loss probability before "

=
L

Logs prosability after "M*

-8 P 3
1 D‘ u-l -2 -1

10
Loss probability belore “M*

Fig.5. Relative ermor of the loss estimation for the path segment after “M” for short (left) and large (right) files

0.1% and 10%. The results are summarized in Table 1. The
results indicate that the loss ratios are estimated quite
precisely in the testbed as well even for very asymmetric
cases.

TABLE 1 - RESULTS FROM THE TESTBED (FILE SIZE 100 KBYTES)

Loss after “M” 0.1 % | Loss after “M” 10 %
Loss before | Estimation | Estimation | Estimation | Estitnation
“M” after “M” |Before “M”| after “M” |before “M”
0.1 % 0.07 % 0.10 % 9.53% 0.10 %
0.2% 0.12% 0.26 % 9.95% 0.23 %
0.5% 0.11 % 0.45 % 1005% | 0.59%
1% 009% | 1.10% | 964% | 1.05%
2% 0.15 % 1.91% 9.77 % 1.92%
5% 0.12 % 317 % 10.14 % 4.86 %
10 % 0.15% 9.82% 9.46 % 10.05 %

Finally, we. present results from an ISP network. The
monitor was placed to the egress point of the ISP network.
The loss estimation algorithm was used to study the effect of
upgrading the ISP’s Internet access link rate. In Fig. 6, the
downlink TCP loss ratio before the monitoring point is shown
for a period of three days before and after the network
upgrade (each value represents a 10 minute average). The
high estimated packet loss 1atios outside the 1SP’s .domain

Before upgrade
8.0 T

Fig. 6. Loss probability in a dial-up ISP network

indicate the congestion of the ISP’s leased line. It can be seen
that both the average and the peak loss ratio decreased after
the upgrade of this link. The average loss ratio changed from
1.31% to 0.55% whereas the peaks lowered from 5-6% to 2-
3%.

VI. CONCLUSION

We have proposed a passive monitoring based end-to-end
TCP packet loss estimation algorithm. We introduced the
notion of significant packet set, which decreases the
estimation error by only including packets, for which the
algorithm is able to determine, with high probability, whether
the packet was lost or not. To improve the accuracy, the
effects of spurious timeouts, mass losses, load balancing and
packet reordering are considered. All-round, tigorous
simulations have been carried out that showed that the
algorithm is capable of estimating the packet loss ratio with
high precision for the practically relevant parameter space.
The algorithm has been implemented and tested in a testbed.
We have found that the measurement results are consistent
with the simulations. Finally, we have demonstrated the
applicability of the algorithm with results from an operational
ISP network.

REFERENCES

[11 I Postel, "Transmission Conirof Protocol," RFC 793, September 1981.

[2) L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of
a congestion control algorithm: the effects of two-way traffic,” Proc.
ACM SIGCOMM '91, pp. 133-147, September 1991.

[3]1 K. Fall and 8. Fleyd, "Simulation-based comparison of Tahoe, Reno,
and SACK TCP," Computer Communication Review, vol. 26, pp. 5-21,
July 1996,

[4] V. Paxson, “Automated packet trace analysis of TCP implementations,”
Proc. ACM SIGCOMM “97, pp. 167-179, September 1997.

[5] J. Mogul, “Observing TCP dynamics in real networks,” Proc. ACM
SIGCOMM '92, pp. 305-317, August 1992,

[6] V. Paxson, "End-to-end Intermet packet dynamics,” Proc. ACM
SIGCOMM *97, pp. 139-152, September 1997.

[7] Tstat TCP STatistic and Analisys Tool hitp:/iverzapolite.it/

[8] S. Floyd and T. Henderson, "The NewReno modification to TCP's fast
recovery algorithm," RFC 2582, April 1999.

[9] NIST Net network emulator
hittp://snad.ncsl.nist.gov/itg/nistnet/

home page

2613

