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Abstract—In this work we develop simple inference models based on fi-
nite capacity single server queues for estimating the buffer size and the in-
tensity of cross traffic at the bottleneck link of a path between two hosts.
Several pairs of moment-based estimators are proposed to estimate these
two quantities. The best scheme is then identified through simulation.
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I. INTRODUCTION

THE huge expansion of the Internet coupled with the emer-
gence of new (in particular, multimedia) applications pose

challenging problems in terms of performance and control of the
network. These include the design of efficient congestion con-
trol and recovery mechanisms, and the ability of the network to
offer good Quality of Service (QoS) to the users. In the current
Internet, there is a single class best effort service which does not
promise anything to the users in terms of performance guaran-
tees. The forthcoming deployment in the Internet of differenti-
ated services (known as DiffServ 1) will be a first (long awaited)
step towards the support of various types of applications and
business requirements. It is however doubtful that DiffServ –
which will mark each packet to receive a particular forwarding
treatment, or per-hop behavior, at each network node – or the
RED mechanism for congestion avoidance in gateways [1] alone
will solve all QoS issues raised by real-time applications. Diff-
serv and RED are two instances of a general approach that aims
at adding more intelligence in the network. A more ambitious
component of this approach is captured in the concept of active
networking[2] that aims at exploiting mobile code and program-
mable infrastructure to provide rapid and specialized service in-
troduction.

A complementary approach for providing QoS guarantees is
to add intelligence to the applications. The idea is to provide
applications with enough knowledge of the network so that they
can use this information to adapt their transmission rates to cur-
rent network conditions. Since it is impossible to monitor every
link on the Internet, static (e.g. bandwidth of a link) and dy-
namic (e.g. available bandwidth on a path) network internal
characteristics have to be estimated from measurements deliv-
ered by the network (e.g. packet losses in RTCP feedback). Our
work falls into the latter category.

The estimation of network characteristics from measurements
has been carried out in a number of cases. For instance, the
packet-pairtechnique can be used to estimate both the bottle-
neck bandwidth [3], [4], [5] and the available bandwidth along

1http://www.ietf.org/html.charters/diffserv-charter.html

a path connecting two hosts on the Internet [4], [5], [6]. The
arrival rates of interfering traffic and the service rates of cus-
tomers on the route of a CAC (call acceptance controller) probe
stream can also be estimated for a product form Kelly network
[7]. The steady-state throughput of a bulk transfer TCP flow can
be estimated as a function of loss rate and round-trip time us-
ing the so-called TCP-friendly formula [8], [9], [10]. Although
the previous estimates have been devised under the assumption
that there exists a single bottleneck link on a path connecting
two hosts, experiments reported in the previous references indi-
cate that these estimates still perform reasonably well when this
assumption is violated.

In this paper we develop a simple inference (queueing) model,
based on the single bottleneck link assumption, that will allow
us to simultaneously estimate the bandwidth capacity, the back-
ground traffic intensity (hereafter called the cross traffic) and
the buffer size at the bottleneck link. As already pointed out,
knowledge of the available capacity at the bottleneck link can
be used by an application to adapt its transmission rate. We ex-
pect this quantity to be better estimated when taking explicitly
into account the cross traffic and the buffer size at the bottleneck
link (these quantities are not taken care of in the packet-pair al-
gorithm). We also believe that estimates of the intensity of the
cross traffic and of the buffer size at the bottleneck node are use-
ful quantities on their own and can be used by an application for
instance, to estimate the maximum size of a burst. Potential ap-
plications for this work are: adapting sending rate and encoding
in response to network congestion [11], congestion control [12]
and load balancing in routers.

The paper is organized as follows: two inference models
based on the M/M/1/K and the M/D/1/K queues are introduced
in Sections II and III, respectively. In each case, several QoS
metrics of interest are identified and expressed in terms of the
unknown parameters (buffer size, cross traffic intensity, service
capacity). In Section IV, we restrict ourselves to the estimation
of the intensity of the cross traffic and the buffer size (i.e. we
assume that the service capacity is known, provided for instance
by the packet-pair technique) and we propose eleven schemes
that can be used to compute these estimates. Section V reports
simulation results obtained with the ns-2 simulator [13] from
which we were able to select the best scheme out of these eleven
schemes. Concluding remarks and directions for future research
are given in Section VI.

0-7803-7016-3/01/$10.00 ©2001 IEEE 1045 IEEE INFOCOM 2001



II. THE M+M/M/1/K QUEUE

A. The model

We model an Internet connection by a single server queue rep-
resenting its bottleneck node, following [3]. The buffer is finite
with room for K customers (K ≥ 1) including the customer
in service. The incoming traffic at the bottleneck is modeled as
two independent Poisson sources: the probe traffic generated by
a foreground source with rate γ, and the cross traffic generated
by a background source with rate λ. This background source
can be seen as the superposition of many heterogeneous sources.
We model the service times as i.i.d. random variables with ex-
ponential distribution with mean 1/µ, further independent of the
arrival processes. This assumption represents the variability of
the packet sizes. We are aware of the strength of this assumption
but we assumed it for the tractability it gives to the study of the
model.

γ

λ

K

µ

Fig. 1. The inference model.

The traffic intensity is defined as

ρ =
λ+ γ

µ
. (1)

We are interested in the behavior of the system from the per-
spective of the foreground customers. This includes stationary
measures such as expected delay, loss probability, server occu-
pancy and a number of additional statistics associated with the
foreground loss process, namely, the probability of two consec-
utive losses and the probability of two consecutive successes. It
is important to observe that these stationary metrics do not per-
tain exclusively to the foreground source, but to the background
source as well, due to the Poisson assumption and its memory-
less property.

Let {Qn}∞n=1 be the process of the number of packets in the
buffer at time of the n-th arrival from foreground source, and let
Q = limn→∞Qn

2. The distribution of Q is πi = P (Q = i). It
is known that [14]

πi =
(1− ρ)ρi

1− ρK+1
, i = 0, 1, . . . ,K. (2)

B. The loss probability

We focus here on the loss process. We define Xn = 1{Qn =
K} and X = limn→∞Xn. A customer is lost whenever it ar-
rives to a full buffer. In other words, customer n is lost when-
ever Xn = 1 and is not lost otherwise. Let {an}∞n=1 and
{dn}

∞
n=1 be the arrival times to the system and the departure

2A word on the notation in use: let {Zn}n be a sequence of random variables
taking values in [0,∞). Assume that limn→∞ P [Zn ≤ x] exists for all x ≥ 0.
ThenZ = limn→∞ Zn designates any random variable such that P [Z ≤ x] =
limn→∞ P [Zn ≤ x]

times from the system, respectively, of the n-th foreground cus-
tomer, n = 1, 2, . . .. When a packet is lost, it never reaches the
destination. We shall assume that dn =∞ if Xn = 1.

Using the PASTA property [15, page 137], the probability that
a foreground customer arrives to find the system full and is lost
is

PL := P (X = 1) = P (Q = K)

=
(1− ρ) ρK

1− ρK+1
. (3)

Observe that the expression for PL can be used to give the fol-
lowing expression for K in terms of ρ and PL,

K =
1

log ρ
log

(

PL
1− ρ (1− PL)

)

. (4)

C. The server utilization

The second metric of interest is the utilization U of the
server, defined as the probability of a non-empty queue as seen
by a foreground customer. In order to express U , we intro-
duce the following indicator Yn = 1{Qn > 0} and define
Y = limn→∞ Yn. The server utilization is then

U := P (Y = 1) = P (Q > 0)

= ρ

(

1− ρK

1− ρK+1

)

(5)

= ρ (1− PL). (6)

Again, we can derive from the expression for U the following
expression for K in terms of ρ and U ,

K =
1

log ρ
log

(

1− U/ρ

1− U

)

. (7)

D. The expected response time

When available, the expected response time is also a rele-
vant metric. To express this quantity, we first define Tn as the
response time of the n-th foreground packet. It follows that
Tn = dn − an. Again, let T = limn→∞ Tn, then, the expected
response time is

R := E[T |X = 0 ] =

∑K−1
i=0 (i+ 1)π(i)

µ(1− πK)
(8)

since a customer waits for an average time (i + 1)/µ if there
were already i customers in the queue; 1−πK is the probability
of a success. Using (2) we can write

R =
1

µ (1− πK)

(

1− ρ

1− ρK+1

K−1
∑

i=0

(i+ 1) ρi

)

.

Hence,

R =
1

µ (1− πK)

[

1− ρK

(1− ρ) (1− ρK+1)
−
K ρK
1− ρK+1

]

=
1

µ (1− ρ)
−
K

µ

πK
(1− ρ) (1− πK)

. (9)
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The last expression for R, which was derived using (2), will
prove useful. We can express R only in terms of ρ and K by
replacing πK given by (3) in (9). This gives

R =
1

µ (1− ρ)
−
K

µ

ρK

1− ρK
. (10)

E. The conditional loss probability

The next metric we are going to study is the conditional loss
probability or, in other words, the probability that two consecu-
tive losses occur. It is expressed as follows

qL := P (Qn = K |Qn−1 = K). (11)

In order to be able to derive a closed form expression for qL, we
define N(t) to be the queue length of the system at time t ≥ 0
with the foreground source removed ( γ = 0). Let Pi,k(t) =
P (N(t) = k |N(0) = i). Hence (11) rewrites

qL = γ

∫ ∞

0

e−γtPK,K(t) dt = γ P
∗
K,K(γ) (12)

where P ∗K,K(γ) is the Laplace transform of PK,K(t). The fol-
lowing result is proved in the appendix.

Proposition II.1:

P ∗i,K(γ) =
ai+1 (1− a)−1 − bi+1 (1− b)−1

λ (bK+1 − aK+1)

for i = 0, 1, . . . ,K, where

a =
λ+ µ+ γ +

√

(λ+ µ+ γ)2 − 4λµ

2λ

b =
λ+ µ+ γ −

√

(λ+ µ+ γ)2 − 4λµ

2λ
.

2

From Proposition II.1 we get that

P ∗K,K(γ) =
(1− a)−1 − (b/a)K+1(1− b)−1

λ ((b/a)K+1 − 1)

which in turn implies from (12) that

qL =
(γ

λ

)

(

(1− a)−1 − (b/a)K+1(1− b)−1

(b/a)K+1 − 1

)

. (13)

Expression (13) for qL can be inverted to give

K =
log
(

γ

1−a + qLλ
)

− log
(

γ

1−b + qLλ
)

log b− log a
− 1. (14)

F. The conditional non-loss probability

Another metric can also be calculated. It is the conditional
probability that a foreground packet arrives to find room in the
buffer given that the previous foreground customer was also ad-
mitted. We shall refer to this probability as the conditional non-
loss probability and will denote it by qN . We have

qN := P (Qn+1 6= K |Qn 6= K)

=

K−1
∑

i=0

P (Qn+1 6= K,Qn = i, Qn 6= K)

P (Qn 6= K)

=
K−1
∑

i=0

P (Qn+1 6= K |Qn = i)π(i)

1− π(K)

=

K−1
∑

i=0

(1− P (Qn+1 = K |Qn = i))π(i)

1− π(K)
.

Recall the definition of Pi,k(t) = P (N(t) = k |N(0) = i),
where N(t) is the queue-length at time t when γ = 0 (no fore-
ground customers). Since the n-th foreground customer is ac-
cepted in the system when Qn = i < K, we have

P (Qn+1 = K |Qn = i) =

∫ ∞

0

Pi+1,K(t) γ e
−tγ dt

= γ P ∗i+1,K(γ)

for i = 0, 1, . . . ,K − 1, with P ∗j,k(s) =
∫∞

0 e
−stPj,k(t)dt.

Therefore,

qN = 1− γ

K−1
∑

i=0

P ∗i+1,K(γ)π(i)

1− π(K)
. (15)

Using proposition (II.1) which gives an expression for P ∗j,K(γ),
(15) rewrites

qN = 1−
(γ

λ

)

(

1− ρ

1− ρK

)(

1

bK+1 − aK+1

)

×

[

a2 (1− (ρa)K)

(1− a)(1− ρa)
−
b2 (1− (ρb)K)

(1− b)(1− ρb)

]

. (16)

Since

P (Qn+1 = K) = P (Qn+1 = K |Qn = K)P (Qn = K)

+P (Qn+1 = K |Qn 6= K)P (Qn 6= K)

we deduce that PL, qL and qN are linked by the following rela-
tionship

PL (1− qL) = (1− PL) (1− qN ). (17)

III. THE M+M/D/1/K QUEUE

A. The model

We still consider the model introduced in Section II-A but we
now relax the assumption that the service times are exponen-
tially distributed. Instead we will assume that the service times
are constant and all equal to 1/µ. In Section II-A, we motivated
our choice for exponentially distributed service times by the fact
that various packet lengths are possible. Taking into consider-
ation that packet lengths may not be so variable to justify the
choice of an exponential distribution, we study here the other
extreme case: the service times are taken to be constant (i.e. all
packets have the same length) with value σ = 1/µ. Recall the
definition of the traffic intensity given in (1).

Again, let {Qn}∞n=1 be the process of the number of packets
in the queue at time of the n-th arrival from foreground source
and let Q = limn→∞Qn. Some preliminary results must be
introduced before computing the stationary distribution of Q.
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Let F(θ) = E[exp(−θσ)] (<(θ) ≥ 0) be the Laplace-
Stieltjes transform (LST) of the service time distribution. Since
we consider a constant service time, this transform rewrites as
F(θ) = exp(−θσ). For ρ ≥ 0 and |z| ≤ 1, define

Gρ(z) = F

(

ρ (1− z)

σ̄

)

− z

= e−ρ (1−z) − z. (18)

For ρ ≥ 0, we denote by z0(ρ) the zero of Gρ(z) having the
smallest modulus. Also, we denote by [zn]f the coefficient of
zn in the Taylor series expansion of f .

To express the stationary distribution of Q, we base our calcu-
lus on Cohen’s analysis of the M/G/1 queue with finite waiting
room [16, Chapter III.6]. Introduce the parameter B defined as

B = 1 +
ρ

2πi

∮

Dr

(

1

Gρ(z)

)

dz

zK−1
(19)

withDr any circle in the complex plane with center 0 and radius
strictly less than |z0(ρ)|. According to the results obtained by
Cohen [16, page 575], we have

P (Q = 0) =
1

B

P (Q = j) =
1

2πiB

∮

Dr

(

1− z

Gρ(z)
− 1

)

dz

zj

P (Q = K) =
1

2πiB

∮

Dr

(

ρ− 1

Gρ(z)
+
1

1− z

)

dz

zK−1

where j = 1, . . . ,K − 1. The integrals in the r.h.s. of (19) and
the preceding two equations can be evaluated using the theorem
of residues. The distribution of Q is then given by

π0 =
1

1 + ραK(ρ)
(20)

π1 =
α2(ρ)− 1

1 + ραK(ρ)
(21)

πj =
αj+1(ρ)− αj(ρ)

1 + ραK(ρ)
, j = 2, . . . ,K − 1 (22)

πK =
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
(23)

where

αj(ρ) = [z
j−2]

1

Gρ(z)
=

1

(j − 2)!

(

d(j−2)

dzj−2
1

Gρ(z)

)

z=0

.

When the service times are constant, an analytical expression
for αj(ρ) can be derived. To this end, start from

1

Gρ(z)
=

1

e−ρ (1−z) − z
= eρ (1−z)

∑

i≥0

(zeρ (1−z))i

where the last equality is true for z such that |zeρ (1−z)| < 1,
which yields

1

Gρ(z)
=

∑

i≥0

zieρ (i+1) e−ρ (i+1)z

=
∑

i≥0

∑

k≥0

zieρ (i+1)
(−ρ (i+ 1)z)k

k!

=
∑

n≥0

(

∑

i+k=n

eρ (i+1) (−1)k ρk (i+ 1)k

k!

)

zn.

Hence,

αj(ρ) =
∑

i+k=j−2

eρ (i+1)(−1)kρk(i+ 1)k

k!
, j ≥ 2. (24)

B. The loss probability

Recall the definition of Xn introduced in Section II-B, Xn =
1{Qn = K} and X = limn→∞Xn. A customer n is lost
whenever Xn = 1 and is not lost otherwise.

The probability that a foreground customer is lost is the prob-
ability that it finds the system full upon arrival, namely,

PL := P (X = 1) = P (Q = K)

=
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
. (25)

C. The server utilization

The utilization U of the server was defined as the probability
of a non-empty queue. The server utilization is

U := P (Q > 0)

=
ραK(ρ)

1 + ραK(ρ)
. (26)

D. The expected response time

Applying Little’s formula and the PASTA property to the
queue, we find that the expected response time R is given by

R =

∑K

j=1 j π(j)

(λ+ γ)(1− πK)
. (27)

Using (21), (22) and (23), (27) rewrites

R =
K + (K ρ− 1)αK(ρ)− 1−

∑K−1
j=2 αj(ρ)

ρ µαK(ρ)
(28)

with αj(ρ) defined in (24).

IV. USING THE INFERENCE MODELS

A. An inference question

Until now we have introduced two models for a connection.
In the first model we were able to identify five metrics describ-
ing the quality of service provided to the foreground source,
given in (3), (5), (10), (13) and (16). In the second model we
were only able to find three QoS metrics, given in (25), (26) and
(28). Since ρ = (λ+ γ)/µ, all these equations are expressed in
terms of the parameters λ, µ and K (γ is assumed to be known
throughout the paper).

The problem is therefore the following: How can we infer es-
timates λ̂n, µ̂n and K̂n of parameters λ, µ and K, respectively,
from the observations collected by the first n probe packets?
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If the parameters λ, µ andK are unknown, then (3), (5), (10),
(13) and (16) leave us with nine schemes to compute these three
constants in the M/M/1/K case (there are ten possible schemes
but relation (17) reduces that number to nine); no scheme is
available in the M/D/1/K as only (25) and (26) can be used.

If we now assume that only λ and K are unknown (µ being
estimated for instance, using a packet-pairbased technique [3],
[4], [5]), then ten schemes in the M/M/1/K case and one scheme
in the M/D/1/K case can be used to compute these two constants.
These eleven schemes are listed in Table I, where the notation
X_Y denotes the scheme obtained by using the metrics X and
Y in the M/M/1/K case and where PL_U_D denotes the scheme
obtained by using the metrics PL and U in the M/D/1/K case.

TABLE I

SCHEMES FOR ESTIMATING λ AND K .

Scheme Equations to use

PL_U (referred to as scheme I) (3), (5)
PL_R (II) (3), (10)
PL_qL (III) (3), (13)
PL_qN (IV) (3), (16)
U_R (V) (5), (10)
U_qL (VI) (5), (13)
U_qN (VII) (5), (16)
R_qL (VIII) (10), (13)
R_qN (IX) (10), (16)
qL_qN (X) (13), (16)
PL_U_D (XI) (25), (26)

B. Solving for the equations

From now on we will restrict ourselves to the estimation of
parameters λ and K, thereby assuming that µ and γ are known.
In this case, each scheme identified in Section IV-A involves two
QoS metrics. For instance, the loss probability PL and the server
utilization U in scheme I, the expected response time R and the
conditional loss probability qL in scheme VIII, etc. Assume that
both QoS metrics involved in a scheme can be evaluated from
measurements collected at the sender/receiver (cf. Section IV-
C). Then, estimators for λ and K will be obtained by “solving”
the scheme w.r.t. the variables λ andK.

If we want to apply a certain scheme to estimate the buffer
size and the intensity of the cross traffic, we must establish
existence and uniqueness of its solution (λ,K). To be more
precise, consider for instance scheme I. Then, for any (ob-
served/measured) values of PL and U with 0 ≤ PL < 1 and
0 ≤ U < 1, we want to find a single pair (λ,K) satisfying
the set of equations defined by (3) and (5). This existence and
uniqueness property holds for scheme I as shown below, as well
as for schemes II and V (proofs not provided for sake of concise-
ness). As to the other schemes we have not been able to show
that property, but in all experiments that have been carried out
and that are reported in Section V, each scheme always gave us a
unique solution. We now briefly discuss the solution to scheme
I, show the existence and uniqueness of the solution for scheme
II, and indicate how a solution can be found for scheme XI.

B.1 Solving for scheme I

Equations involved here are (3) and (5), namely,

PL =
(1− ρ) ρK

1− ρK+1

U = ρ

(

1− ρK

1− ρK+1

)

= ρ (1− PL).

Hence,

ρ =
U

1− PL
i.e. λ =

µU

1− PL
− γ (29)

and

K =
log(PL/(1− U))

log(U/(1− PL))
(30)

by combining (29) and (7). Therefore, the set of equations (3)
and (5) in the variables λ and K has a unique solution given in
(29) and (30), respectively.

It is interesting to investigate the sensitivity of λ and K with
respect to the variables PL and U . To do so, let us compute the
differentials of λ and K considered as functions of PL and U .
From (29) and (30) we find

dλ =
µ

1− PL

(

dU +
U

1− PL
dPL

)

dK =
1

log2(U/(1− PL))
(B dU + C dPL)

where

B =
log(U/(1− PL))

1− U
−
log(PL/(1− U))

U

C =
log(U/(1− PL))

PL
−
log(PL/(1− U))

1− PL
.

We conclude from the above that λ will be more sensitive to
the variations of PL (resp. U ) than to the variations of U (resp.
PL) whenever ρ = U/(1 − PL) > 1 (resp. ρ < 1). As for
K, it follows primarily U ’s variations since it is easily seen that
B > C, except when ρ = 1 (U = 1− PL) in which case λ and
K are equally influenced by PL and U ’s variations.

B.2 Solving for scheme II

Assume that one knows R and PL and that ρ and K are un-
known. The expression for PL can be used to give the following
expression for K in terms of ρ and PL. We find from (3)

K =
log(PL/(1− ρ (1− PL)))

log(ρ)
. (31)

Plugging now this value of K in (9) gives

R =
1

µ (1− ρ)
−
PL log(PL/(1− ρ (1− PL)))

µ (1− ρ) (1− PL) log(ρ)
.

Observe that necessarily ρ < 1/(1 − PL). For
0 < x < 1/(1− PL), introduce the mapping

f(x) =
1

µ (1− x)
−
PL log(PL/(1− x (1− PL)))

µ (1− x) (1− PL) log(x)
−R.
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If one can show that the equation f(x) = 0 has a unique solution
in (0, 1/(1−PL)), then this solution will give us ρ, hence λ, and
subsequently K by using (31). Proposition IV.1 shows that this
is indeed the case.

Proposition IV.1: For any constants µ > 0, PL ∈ [0, 1) and
R ≥ 1/µ, the equation f(x) = 0 has a unique solution in
[0, 1/(1− PL)]. 2

Sketch of the proof.Define the mappings

h(x) := (1− PL)
2x3 + (1 + 2a (1− PL)

2)x− a(1− PL)

+ ((1− a)P 2L + (1 + 2a)PL − (2 + a))x
2

and

k(x) := (1− PL)
2 x2 + (P 2L + PL − 2)x+ 1.

where a := 1−Rµ
Rµ (1−PL)

≤ 0.
When a < 0 it can be shown that the polynomial h(x) has a

unique zero in [0, 1/(1− PL)], denoted as ρ(a). When a = 0,
then h(x) has two zeros in [0, 1/(1−PL)]: x = 0 and x = ρ(0)
where ρ(0) 6= 0 is the unique zero of the polynomial k(x) in
[0, 1/(1−PL)]. The following properties then hold for all a ≤ 0:
• if ρ(a) < 1 then f(x) has a unique zero in the interval
[0, 1/(1−PL)]; this zero is located in the interval [0, ρ(a)];

• if ρ(a) > 1 then f(x) has a unique zero in the inter-
val [0, 1/(1 − PL)]; this zero is located in the interval
[ρ(a), 1/(1− PL)];

• if ρ(a) = 1 then x = 1 is the unique zero of f(x) in the
interval [0, 1/(1− PL)]

which concludes the proof.

B.3 Solving for scheme XI

This scheme still involves PL and U , but this time these quan-
tities have to be computed for the M+M/D/1/K queue. More
precisely, cf. (25) and (26),

PL =
1+ (ρ− 1)αK(ρ)

1 + ραK(ρ)
(32)

U =
ραK(ρ)

1 + ραK(ρ)
(33)

with αK(ρ) given in (24).
Recall that we want to solve the system of equations (32)-(33)

with respect to the variables ρ and K. We readily observe from
(32)-(33) that

ρ =
U

1− PL
(34)

and

αK(ρ) =
1− PL
1− U

. (35)

If all coefficients {αj(ρ), j ≥ 2} in the Taylor series expansion
of 1/Gρ(z) are different, then (34)-(35) will return a unique so-
lution (ρ,K).

For given ρ, we computed the coefficients αj(ρ) for a certain
range of j and compared the results with the r.h.s. of (35); then
K was chosen as the integer j for which αj(ρ) was the closest
to (the measured value of) (1− PL)/(1− U).

C. Calculating the moment-based estimators

We have at our disposal the first n samples of {Xi}i, {Yi}i,
{ai}i, {di}i for the probing traffic, and we know γ and µ. Let
Û(n), P̂L(n), R̂(n), q̂L(n) and q̂N (n) denote the estimators of
U , PL, R, qL and qN , respectively. They are defined as (n =
1, 2, . . .)

P̂L(n) :=
1

n

n
∑

i=1

1(Xi = 1) (36)

Û(n) :=
1

n

n
∑

i=1

1(Yi = 1) (37)

R̂(n) :=

∑n

i=1 1(Xi = 0) (di − ai)
∑n

i=1 1(Xi = 0)
, (38)

q̂L(n) :=

∑n−1
i=1 1(Xi = 1, Xi+1 = 1)
∑n−1
i=1 1(Xi = 1)

, (39)

q̂N (n) :=

∑n−1
i=1 1(Xi = 0, Xi+1 = 0)
∑n−1
i=1 1(Xi = 0)

. (40)

P̂L(n) and Û(n) are estimated over all packets, R̂(n) and q̂N (n)
are estimated over successful packets and q̂L(n) is estimated
over lost packets only. We expect slow convergence when es-
timating qL, hence, intuitively, we can say that all schemes in-
volving this metric will not perform well.

D. Desirable properties of an estimator

If a comparison is to be made among several estimators, it is
useful to have in mind the main properties of a good estimator.
Namely, an estimator is preferably unbiased and consistent. Un-
biasedness has been proved for P̂L(n), Û(n) and R̂(n), while
q̂L(n) and q̂N (n) turn out to be biased (see Section IV-D.1).
Consistency for each metric is much more complicated to show.
The major difficulty in establishing such a property is due to the
fact that the rv’s {Xi}i are correlated, since the queue is finite
and since the samples are taken from consecutive foreground
packets rather than random packets.

D.1 Study of the mean values

Using the identity E[1(A)] = P (A) that holds for any event
A, we find

E[P̂L(n)] = PL

E[Û(n)] = U

E[R̂(n)] = R

E[q̂L(n)] = qL −
cov[q̂L(n), P̂L(n− 1)]

PL

E[q̂N (n)] = qN +
cov[q̂N (n), P̂L(n− 1)]

PL
.

The last two equalities follow from (39) and (40) when ex-
pressed as follows

q̂L(n) =

∑n−1
i=1 1(Xi = 1, Xi+1 = 1)

(n− 1) P̂L(n− 1)

q̂N (n) =

∑n−1
i=1 1(Xi = 0, Xi+1 = 0)

(n− 1) (1− P̂L(n− 1))
.
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Clearly, P̂L(n), Û(n) and R̂(n) are unbiased estimators
whereas q̂L(n) and q̂N (n) are biased but the bias depends on
the size of the samples. Moreover, if P̂L(n) is consistent then
the bias approaches 0 as n→∞ for both estimators.

The overall performance of the estimators is presented in Ta-
ble II. For each experiment (50 different experiments have been
conducted; see details in Section V), we have computed the
relative error between each estimator in (36)-(40) and its cor-
responding theoretical value. This computation has been per-
formed after the generation of 50000 probe packets. For a given
estimator, we therefore have a collection of 50 relative errors.
These 50 numbers have been ordered and their average value
has been computed. Table II now reads as follows. Consider
the metric PL (1st line): in 66% of the experiments the rela-
tive error was within 6.1% of the theoretical value (in the table
this quantity is referred to as the percentage of hits), the aver-
age value being approximately equal to 3. In all cases, the rel-
ative error is larger than 0.08% of the theoretical value. The
4th column in Table II gives, for each QoS metric, the min-
imum/average/maximum values of the empirical variance ob-
tained after 50000 probe packets. More precisely, only the ex-
periments for which the relative error was smaller than the max-
imum value indicated in column 3 were used in this computa-
tion, the others being discarded. For instance, in the 5 th line of
Table II, we can read that the empirical variance for qN lies in
the interval (3 × 10−5, 6.7) with an average value of 1.40. We
see from this table that the top three estimators (in terms of un-
biasedness and consistency) are, in decreasing order, R, U and
qN . Further comments on Table II can be found in Section V-C.

TABLE II

OVERALL PERFORMANCE OF THE ESTIMATORS FOR 50000 PROBE PACKETS.

Hits Relative error Empirical variance
min/avg/max (%) min/avg/max

PL 66% 0.08/3/6.1 8×10−4/0.65/3.5
U 98% 0.0003/0.62/5.4 5×10−6/0.47/4.7
R 94% 0.0005/0.88/3.6 2×10−8/0.007/0.2
qL 48% 0.05/2.92/8.9 6×10−4/3.50/33.6
qN 100% 0.004/1.92/6.3 3×10−5/1.40/6.7

V. SIMULATION RESULTS AND ANALYSIS

A. Trace generation

The data sets {ai}i, {di}i, {Xi}i and {Yi}i were extracted
from traces generated by simulation models in ns-2. Overall 50
simulations have been performed. We have concentrated on the
simple case of a single queue (i.e. we didn’t try to use our es-
timates in the case where there are several bottleneck links) to
test the behavior of both inference models under various back-
ground traffic patterns. Several types of background traffic have
been considered:

(T1) A Poisson flow of packets with exponentially distributed
packet size.

(T2) A superposition of 100 Poisson-like flows. The packet
length is constant for each flow and its value is taken from
an exponential distribution.

(T3) An aggregation of 250 FTP over TCP flows.
(T4) An aggregation of 1000 FTP over TCP flows.
(T5) An aggregation of 100 On/Off flows, where the On and

Off times were taken from a Pareto distribution.
(T6) An aggregation of 250 On/Off flows, where the On and

Off times were taken from a Pareto distribution.
In all experiments foreground packets arrive according to a Pois-
son process and have exponentially distributed packet sizes ex-
cept in the case when the background traffic is of type (T2); in
the latter case, the foreground source is also of type (T2).

Note that the Poisson assumption for the background traf-
fic is everywhere violated except in case (T1). Indeed, as we
know that in general traffic is not Poisson in today’s networks
[17], it is important to test the robustness of our estimators when
the background traffic is not Poisson (this assumption has been
made only for mathematical tractability) and exhibits correla-
tions across several time scales (like in case (T5)-(T6); see [18]).

The rate of the foreground traffic (the probe packets) was
equal to 250 pkts/s in all experiments (except in case (T1) where
values of 125, 250 and 500 pkts/s were chosen). On the network
side, the server rate was either equal to 1500 pkts/s or to 6500
pkts/s and the buffer size was either equal to 10, 30, 65, 100,
150 or to 1000 packets (recall that in ns-2 the size of the buffer
is defined in number of packets regardless of their size).

Below, we give the ranges of values obtained for the five met-
rics over all 50 experiments:
• PL ranged from 1.7×10−4 to 0.637
• U ranged from 0.892 to 1
• R ranged from 0.0007 to 0.66 seconds
• qL ranged from 0.105 to 0.64
• qN ranged from 0.367 to 0.9998.
As for the rate of exogenous traffic intensity λ, measured as

the number of background packets arriving to the bottleneck link
over the run time, its value ranged from 1593.2 to 17437 packets
per millisecond, giving the range 0.965 - 2.758 for the traffic
intensity ρ.

B. Estimating background traffic intensity and buffer size

Having at our disposal {ai}i, {di}i, {Xi}i and {Yi}i for the
n first probing packets, the moment-based estimators are com-
puted according to formulas (36), (37), (38), (39) and (40). At
this point, P̂L(n), Û(n), R̂(n), q̂L(n) and q̂N (n) are plugged
into (3), (5), (10), (13), (16), (25) and (26). The eleven pairs of
equations referred to as schemes I through XI are then solved
numerically using a C program including the NAG 3 C library.
Results are reported in Tables II-VI.

C. Analysis of the results

Coming back to Table II, we observe that metrics R, U and
qN exhibit the highest percentage of hits thereby suggesting that
schemes involving these metrics may perform better than the
others. Surprisingly this is not what we have found though, the
best scheme being in general PL_R. Since PL is a single-side
measurement as opposed to R which is an end-to-end measure-
ment, one possible reason for having the scheme PL_R per-
forming the best is that estimators PL and R are probably the

3NAG is a copyright of The Numerical Algorithms Group Ltd
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ones containing the least redundant information, (as opposed to
scheme PL_qN , for instance). Furthermore, in our simulations
we considered only congested cases resulting in a delay in the
first estimation of U since the value Û = 1 is not a valid value
in both models. Hence, all schemes including U suffered from
this discrepancy and their results were not the best ones. At
last, schemes PL_R and R_qN gave similar results however the
former scheme performed slightly better. From now on, only
results pertaining to scheme PL_R are presented.

TABLE III

RELATIVE ERRORS OF THE ESTIMATES FOR 50000 PROBE PACKETS RETURNED BY

THE SCHEME PL_R, WHEN THE CROSS TRAFFIC IS A SINGLE POISSON SOURCE.

λ 6600 6600 6600 17068
γ 124 248 496 125

K µ 6968 6968 6967 6962

10 λ̂ 0.6 0.004 0.1 0.1
K̂ 0.7 0.9 1.4 0.4

30 λ̂ 0.1 0.1 0.3 0.9
K̂ 0.7 1.6 0.6 0.05

65 λ̂ 0.04 0.2 0.7 1.0
K̂ 1.1 1.0 0.3 0.1

100 λ̂ 0.04 0.1 0.1 0.5
K̂ 2.8 2.7 0.2 0.01

150 λ̂ 0.1 0.1 0.02 0.2
K̂ 8.3 4.1 0.4 0.03

TABLE IV

RELATIVE ERRORS OF THE ESTIMATES RETURNED BY THE SCHEME PL_R FOR

120000 PROBE PACKETS.

Cross traffic On/Off FTP/TCP
Nb of sources 100 250 250 1000

λ 6812 17437 1641 1870
γ 247 246 248 248

K µ 6663 6532 1502 1491

10 λ̂ 3.8 1.0 7.0 2.8
K̂ 7.5 1.1 5.9 0.5

30 λ̂ 5.2 0.6 7.6 3.2
K̂ 17.7 0.5 2.2 0.04

65 λ̂ 6.0 0.6 8.3 3.0
K̂ 29.5 0.4 1.0 0.4

100 λ̂ 5.4 0.4 7.6 3.2
K̂ 31.4 0.4 1.4 0.6

150 λ̂ 4.7 0.05 6.7 3.0
K̂ 33.2 0.1 1.3 0.6

Tables III-V report the relative errors between the estimate
of parameter λ (resp. K), denoted as λ̂ (resp. K̂), returned
by scheme PL_R and the measured value λ (resp. the true
value K), for various cross traffic patterns (Poisson traffic as
defined in (T1) in Table III, a superposition of On/Off sources
with Pareto On and Off time distribution or a superposition of
FTP/TCP flows as defined in (T3)-(T6) in Table IV, Poisson-like

TABLE V

RELATIVE ERRORS OF THE ESTIMATES RETURNED BY THE SCHEME PL_R FOR

120000 PROBE PACKETS: CASE OF POISSON-LIKE FLOWS, λ = 6677, γ = 250 AND

µ = 6374.

K 10 30 65 100 150

λ̂ 3.1 1.1 0.04 0.1 0.1
K̂ 9.2 8.5 6.9 5.4 4.0

flows as defined in (T2) in Table V).
Results contained in Table III are fairly good for moderate

values of K (all relative errors are within 1.6% of the correct
values when K ≤ 65); for larger values of K, it appears that the
convergence to the true values is slower. Notice that in any case
the estimates should converge to the true values as the number
of probe packets increases since the model considered in Table
III is the M/M/1/K queue.

Of more interest are the results in Table IV since they have
been obtained when the assumption that the cross traffic is Pois-
son is violated. We see that the quality of the estimates increases
as the number of source increases (results obtained after 120000
probe packets). For 250 On/Off sources all estimates for λ (resp.
K) are within 1% (resp. 1.1%) of the correct value; for 1000
FTP/TCP flows all estimates for λ (resp, K) are within 3.2%
(resp. 0.6%), still a good result.

As for the set of simulations where all sources (i.e. fore-
ground andbackground sources) were Poisson-like (type (T2))
relative errors are reported in Table V. In this case, the service
time was constant for each source, which differs from the the-
oretical model, thereby explaining the error in the estimation
of K, the estimation of λ being satisfactory. Finally, Table VI
shows the performance of scheme PL_R over all 50 simulations
(each simulation lasts exactly 500 seconds). We see from this
table that the estimate for λ (resp. K) is always within 9% of
the exact value in 98% (resp. 84%) of the experiments. Only
for large values of K (K ≥ 1000) the scheme works poorly
and may return no value for K̂. From this experimental study

TABLE VI

PERCENTAGE OF HITS FOR SCHEME PL_R OVER ALL SIMULATIONS.

Results of estimation for scheme PL_R

λ̂, error within 1 % 52 %
K̂, error within 1 % 40 %

λ̂, error within 5 % 76 %
K̂, error within 5 % 70 %

λ̂, error within 9 % 98 %
K̂, error within 9 % 84 %

wrong estimation for λ 2 %
wrong estimation for K 10 %
no estimation for (K) 6 %

we conclude that the inference model M+M/M/1/K returns rea-
sonably good results even when the Poisson assumption on the
background traffic is violated. Future work aims to develop a
better understanding of this phenomenon.
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D. From simulation to reality

Till now, we have always assumed to have access to the first
n samples of {ai}i, {di}i, {Xi}i and {Yi}i. In this work, we
have carried out simulations to generate traffic traces, and the
samples were extracted from the traces. However, ultimately,
we must extract the samples from the real network (e.g. the
Internet). How can we do this?

Usually, real-time applications use the Real-Time Transport
Protocol (RTP) [19] together with UDP and IP. RTP provides
end-to-end network transport functions suitable for this kind of
applications, over multicast or unicast network services. RTP
consists of two parts, a data part and a control part referred to
as RTCP, the Real-Time Control Protocol. The feedback infor-
mation is carried in RTCP packets referred to as Receiver Re-
ports (RR).The rate at which they are multicast is controlled so
that the load created by the control information is a small frac-
tion of that created by data traffic. The RR sent by a destina-
tion includes several information: the highest sequence number
received, the number of packets lost, the estimated packet in-
terarrival jitter, and timestamps. At the sender, the {ai}i are
available, the {di}i are retrieved from the timestamps present in
the RR and the {Xi}i are retrieved from the highest sequence
number received at the destination, also given in the RR. As
for the {Yi}i, they are hard to obtain. In [20], the authors pro-
pose an algorithm to estimate the clock skew in network delay
measurements. This algorithm can be adapted to estimate the
{Yi}i (mainly, Y = 0 if the measured delay is minimal) but this
estimation will be weak and uncertain as the service times are
considered constant. Fortunately we found that PL_R is the best
scheme and hence we will not use U .

The work assumes a perfect knowledge of the bottleneck ca-
pacity. In some cases, µ is known exactly (we know the routes
and we know the routers) but sometimes µ is to be estimated and
this introduces further error. Its impact still needs to be investi-
gated.

E. Example of a possible application

An interesting application for the methods proposed in this
paper is routing in content distribution networks. The goal
would be to infer the available bandwidth and buffer size of
the bottleneck queue on a path between two application layer
routers so as to determine how to route new traffic. It should
be possible to probe at a sufficiently high rate to quickly obtain
good estimates. This could be done by embedding a Poisson
stream within the data traffic and/or adding a (relatively) low
bandwidth probe stream. Furthermore, between two application
layer routers, we expect there to be one bottleneck node residing
at a peering point between the two backbone networks within
which the routers reside.

VI. CONCLUSION

In this work, we have proposed two simple models for a con-
nection, based on a single server queue with finite waiting room,
to infer the buffer sizeand the intensity of cross trafficat the bot-
tleneck link of a path between two hosts. We have quantified
several parameters of both models and obtained eleven pairs of
moment-basedestimators. Using traces generated by the net-
work simulator ns-2, estimated values for both parameters have

been calculated according to the characteristics of the a priori
models. Pairs of estimators have been discarded while others
have proved to give good results. However, the pair of estima-
tors we have “elected” as the best one need to be tested on an
experimental network, or even better, on the Internet, in order
to evaluate its performance under realistic network traffic con-
ditions.
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APPENDIX

A Proof of Proposition (II.1)

Recall the definition Pi,k(t) = P (N(t) = k |N(0) = i)
where N(t) is the queue length of the system with the fore-
ground source removed (γ = 0) at time t ≥ 0. We have the
following differential equations:

d

dt
Pi,0(t) = −λPi,0(t) + µPi,1(t) (41)

d

dt
Pi,K(t) = −µPi,K(t) + λPi,K−1(t) (42)

d

dt
Pi,k(t) = −(λ+ µ)Pi,k(t) + λPi,k−1(t)

+ µPi,k+1(t), for k = 1, . . . ,K − 1 (43)

for i = 0, . . . ,K. Define Pi(z, t) =
∑K

k=0 Pi,k(t)z
k. Then,

z
d

dt
Pi(z, t) = z

d

dt

K
∑

k=0

Pi,k(t)z
k = z

K
∑

k=0

d

dt
Pi,k(t)z

k.

Using (41) – (43) and after some algebra we get

z

1− z

d

dt
Pi(z, t) = (µ− λz)Pi(z, t)− µPi,0(t)

+ λzK+1Pi,K(t). (44)

Now we consider the Laplace transform of Pi(z, t), P ∗i (z, s) =
∫∞

0 e
−stPi(z, t) dt. Replacement of this in (44) along with the

use of the following relation
∫ ∞

0

e−st
d

dt
Pi(z, t) dt = sP ∗i (z, s)− Pi(z, 0)

and some algebraic manipulations yields

P ∗i (z, s) =
zi+1 − µ(1− z)P ∗i,0(s) + λ(1− z)z

K+1P ∗i,K(s)

sz − (1− z)(µ− λz)
(45)

where P ∗i,k(s) =
∫∞

0 e
−stPi,k(t)dt, k = 0, 1, . . . ,K. The de-

nominator of the right-hand side of (45) contains two zeros,

z1(s) =
λ+ µ+ s−

√

(λ+ µ+ s)2 − 4λµ

2λ

z2(s) =
λ+ µ+ s+

√

(λ+ µ+ s)2 − 4λµ

2λ

for <(s) ≥ 0.
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As P ∗i (z, s) is analytic, the zeros of the denominator must
also be zeros of the numerator. More precisely, the numerator
must satisfy

zi+1k (s)− [1− zk(s)][µP
∗
i,0(s)− λzk(s)

K+1P ∗i,K(s)] = 0.

These two equations for k = 1, 2 can be solved to yield

P ∗i,0(s) =

z2(s)
i+1z1(s)

K+1

1−z2(s)
− z1(s)

i+1z2(s)
K+1

1−z1(s)

µ (z1(s)K+1 − z2(s)K+1)

P ∗i,K(s) =

z2(s)
i+1

1−z2(s)
− z1(s)

i+1

1−z1(s)

λ (z1(s)K+1 − z2(s)K+1)
.

Let a and b be defined as a = z2(γ) and b = z1(γ), we get

P ∗i,K(γ) =
ai+1 (1− a)−1 − bi+1 (1− b)−1

λ (bK+1 − aK+1)

and the proof is concluded.
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