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Abstraci-This paper presents a passive end-to-end loss 
monitoring method, which relies on traffic monitoring at a core 
or ingress router interface. The monitoring node captures the 
packets of TCP connections generated by end-hosts. Based on 
the seen sequence number pattern the loss ratios are estimated 
for the two segments of end-to-end path divided by the monitor. 
This feature is especially useful if the monitoring node is placed 
at the border of an autonomous system, e.g., at the egress point 
of an ISP. When applied to mobile Internet access, packet losses 
on the radio interface can be distinguished from losses in the 
core network or in the public Internet. The packet loss 
estimation algorithm is rigorously validated using simulations 
and testbed measurements. Additionally, measurement results 
and an application example in a dial-up ISP are presented. 

I. INTRODUCTION 

Packet loss ratio is one of the most important Key 
Performance Indicators o(pI)  for an Intemet Service Provider 
(ISP). It is especially important if the ISP offers business 
grade servicesmith performance guarantees. Although most 
ISPs collect statistics about packet losses from the routers, 
this infomation provides only a "local" view. The problem 
with collecting statistics from the routers is twofold. On the 
one hand, summing up per-hop counters does not necessarily 
yield the end-to-end loss. On the other hand, an ISP has 
control over only a single segment (e.g., over an Autonomous 
System) of the end-to-end connection, therefore its managing 
horizon is limited. 

TCP, the dominant protocol in the Intemet [l], includes a 
complex adaptive algorithm, which ensures reliable data 
transfer over unreliable paths. There have been a number of 
papers published analyzing how the path characteristics (e.g., 
loss) affect TCP dynamics [2][5][6]. Our paper discusses the 
inverse problem: by observing TCP dynamics we infer the 
loss properties of the end-to-end path. An existing tool, Tstat 
[7] addresses a similar problem, but it measures the number 
of TCP retransmissions, which is not equal to the loss ratio. 

In this paper a method is described, which can be used by 
ISPs to efficiently monitor the end-to-end loss ratios of 
individual TCP connections or traffic aggregates. A passive 
monitor listens to TCP packets on the data flow direction. 
The algorithm running in the monitor estimates the packet 
loss ratios separately for the two end-to-end path segments 
separated by the monitoring point. Since loss estimation is 
performed on a per-TCP basis, the direction and the location 
of the problem can be deduced. 

The packet loss estimation algorithm can provide the 
operator with the following valuable information: 

9 If the end-to-end loss ratio satisfies the service level 

agreements, 
or there is a problem on a particular path in the ISPs 
own domain, 
andlor there is a problem on a particular path in the 
outside Intemet. 

The described method is based on heuristics that aim to 
estimate the most probable sample path of the TCP state- 
machines in the two communicating end-hosts. We explain 
these heuristics in detail with examples. Since heuristics 
always lack a general proof, we explore a large portion of the 
practically relevant state space by simulations. In addition, 
the algorithm is evaluated in a testbed. We analyze the 
precision of the algorithm by performing several thousands of 
transactions for each configuration. The outcome of the 
analyses is that the algorithm is capable of estimating the 
packet loss ratio for both path segments independently of the 
position of the losses with reasonably high precision. The 
analyses cover the practical ranges of loss ratios from 0.1% to 
10%. 

There are several versions of TCP using different 
congestion control algorithms, which apply different rules to 
cope with packet losses. A comparative analysis can be found 
in [3] and in [4]. We found that the precision of the algorithm 
is acceptable for all TCP versions used in practice. Due to the 
space limitations, the results of these simulations are not 
discussed in detail in the paper. 

The paper is organized as follows: we sketch a "naive" loss 
estimation algorithm in Section 11. After identifying its 
limitations, an improved algorithm is presented in Section 111, 
which tries to solve the problems of the "naive" algorithm. A 
rigorous evaluation of the improved algorithm is presented in 
Section IV. To demonstrate its feasibility, Section V reports 
measurement results from an operational ISP network. We 
conclude the paper in Section VI. 

11. A "NAIVE" Loss ESTIMATION ALGORITHM 

The monitoring point divides the network into two segments 
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as shown in Fig. 1. The client in network “ B  downloads a 
file from the server in network “A” by opening a TCP 
connection. The packets flow through the measurement point 
“ M ,  which lies at the border of network “B’ and network 
‘‘A”. The task of “ M  is to estimate the end-to-end TCP 
packet loss ratio between the server and the client by 
examining the sequence numbers of the packets belonging to 
the TCP connection. Although observing acknowledgment 
packets would help estimating losses, we chose not to use 
them. The reason is  that due to asymmetric routing, data 
packets and acknowledgements often traverse different paths. 

In the following, we identify a few basic, simple rules that 
can be used to detect the losses. First, we classify packet 
losses by the location of the loss. A packet can be lost either 
before reaching the measurement point (i.e., in network “A”), 
or after passing it (in network “8”). Fig. 2 shows a sample 
TCP sequence number pattern seen at the measurement point, 
illustrating the characteristic effects of packet losses. 

A packet loss before the measurement point can be 
detected at point “ M  by observing an out-of-ordlx TCP 
segment that “fills a hole” in the data sequence (in Fig. 2, 
segment S2 fills the hole caused by the loss of segment St). 
Similarly, a repeated sequence number may signal that a 
packet is lost after passing the measurement point. This can 
be seen in Fig. 2 where the retransmitted segment Sr repeats 
the sequence number of the lost segment S,. 

Based on these observations, an initial, “naive” algorithm 
can be conshucted that detects packet losses by maintaining a 
history of sequence numbers seen and comparing whether a 
packet has been seen or it fills a hole. Although this algorithm 
is obviously simplistic, the used heuristics guess packet 
losses correctly in a wide range of practical cases. 

In order to evaluate its precision, we implemenf.ed the 
algorithm and tested it on packet traces obtained from 
simulations. The simulation setup consisted of just three 
nodes: the Server, the Client, and the Monitor ” M .  Th’E delay 
and link rate was set to 100 ms and 64 kbps fa’r both 
segmenu respectively. We simulated the NewReno version of 
TCP [SI. 

During the simulation, the client opened subsequent TCP 
connections to download a fixed length file from the server 
(the maximum window size was set to 64 Kbytes). Packets 
were dropped independently and with equal probability on 
both path segments (in Network “A” and in Network: “B’)). 
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Fig. 2 Detecting packet loss f“ the sequence number panem 

Fig. 3. Simulation results for the‘ttaive’’ algorithm 

The relative error of the packet loss estimation algorithm was 
calculated and plotted against the loss probability ranging 
between 0.1% and lo%, see Fig. 3. 

The simulation results show that the error of loss ratio 
estimation after the measurement point was higher for large 
files. Additionally, in case of estimating packet losses before 
the measurement point, the algorithm is less accurate for 
small files. In the extreme worst case, the relative error of the 
algorithm reached IO, which means that the absolute error 
was approximately 1%. Although in absolute values this error 
does not seem to be too high, in many practical Internet 
configurations, packet losses below 1% should also be 
possible to monitor. 

111. IMPROVE0 ALGORITHM FOR TCP PACKET LOSS 
ESTIMATION 

The reason why the previously described simple algorithm 
makes numerous errors is that packet losses, depending on 
when and where they happen, may result in a large variety of 
sequence number pattems not covered by the algorithm. 
Multiple losses within the same window, different versions 
(Tahoe, Reno) and implementations of TCP also increase the 
complexity of the problem. 

In the measurement point “M”, it would be too difficult - 
and in most cases even impossible - to take all possible 
sequence number sample paths into consideration. In the 
following, instead of pursuing this, we tly to identify the 
scenarios that play an important role for packet loss ratio 
estimation. 

We found that four major effects can explain the 
inaccuracy of the algorithm: 

I .  Spurious timeouts: In case of a sudden rise in the 
round-trip time, a TCP sender may timeout even if no 
packet loss has occurred. The sender then retransmits the 
segment believed to be lost and waits for its 
acknowledgement. When the acknowledgement for the 
original segment arrives, all subsequent segments will be 
retransmitted. The loss estimation algorithm will then 
incorrectly assume that the repeated segments ‘are 
retransmissions of lost packets. This effect can explain 
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the significant error seen in the case of packet loss 
estimation after the measurement point (see Fig. 3). 
Mass losses: If an entire window of data is lost before 
reaching the measurement point, the algorithm will be 
unable to detect it because of the missing out of order 
segments at point “ M .  That is, the algorithm will not see 
the “hole” to be filled and will not recognize the 
retransmissions. Since this effect is more likely to 
happen if the window size is small (e.g., just after 
opening a connection, or after a timeout), it can account 
for the error experienced for small files (see Fig. 3). 
Load balancing: If per-packet load balancing is applied, 
the packets traverse different paths thus the monitoring 
point may not see all packets. The holes are erroneously 
interpreted as indications of losses before the monitoring 
point. 
Reordering: Packet reordering may happen if the 
monitoring point is after the merging point of load 
balancing paths. In this case, the algorithm erroneously 
assumes that the holes in the sequence numbers are 
indications of packet losses before the monitoring point. 

Besides the above-mentioned causes and symptoms, there 
can be additional cases where the simple estimation algorithm 
fails to detect losses precisely. In order to improve the 
algorithm, it is essential to realize that we are not interested in 
determining the exact number of lost packets; we only need 
to calculate the loss ratio instead. The idea is then to choose a 
subset of packets for which it can be determined, with 
relatively high probability, whether and where the packets 
were lost. We call these packets signiJicant packels. The 
estimation is unbiased if packet losses happen independently, 
that is, the loss ratio of significant packets is equal to the loss 
ratio of all packets. Although the algorithm is based on a 
decreased number of packets, the significant packet set is 
expected to be large enough for estimating the loss ratio. 

The set of significant packets is constructed by 
disregarding packets for which the loss detection would be 
too uncertain. In our algorithm, a significant packet is the 
packet that holds a particular data segment for the first time. 
In other words, retransmissions of a data segment are not 
considered to be significant. This is because the loss of a first 
transmission can be detected with quite high probability 
based on the retransmissions seen at the measurement point, 
but the loss of the retransmission itself is hard to recognize. 

In order to cope with the problem of losing an entire 
window of data, we also have to exclude the first and the last 
data segment of a TCP connection when estimating packet 
loss before the measurement point. The reason for this is that 
if the first transmission of these segments is lost before “ M ,  
they are not seen at all. This solution is expected to increase 
the precision of the loss estimation before the measurement 
point. 

We improved the algorithm further by makiig it capable of 
excluding the effect of spurious timeouts. This is achieved by 
continuously searching the history for segments that are 

believed to be lost in a row. If the number of consecutive 
segments lost exceeds a predefined threshold (e.g., three), 
the algorithm assumes that a spurious timeout has occurred 
and removes all the questioned segments from the significant 
packet set. This solution is expected to increase the precision 
ofthe loss estimation after the measurement point. 

When the monitoring point detects that it has not seen all 
the packets of a successfully ended TCP connection, it 
assumes that load balancing was applied for the flow, and 
removes the packets from the significant set. This solves 
problem 3. 

In order to deal with the last problem, namely reordering, 
the packets that have likely been reordered are also removed 
from the significant set. A reliable detection of reordering can 
be based on observing the IP Id field in the IP header of 
consecutive packets. Although there are several different 
ways how operating systems set this field, most of them 
increase the IP Id value with every packet sent in a TCP 
connection (Windows 95/98iNT/2000, most Linux, FreeBSD 
versions, and Solaris as of today). That is, if we observe a 
decrease, it is likely due to reordering on the path. 

Iv. ANALVSIS OF THE IMPROVED ALGORITHM 

In order to check how these improvements influence the 
precision of the algorithm, we carried out simulations with 
the same setup as shown in Fig. 1. We were interested in the 
relative error of the estimation under various parameter sets. 
We define the relative error as the absolute difference of the 
estimated loss and the real loss divided by the real loss ratio: 

Since the algorithm is based on heuristics, to prove its 
applicability, a rigorous test has been performed covering a 
large portion of the practically relevant parameter space. 

In Fig. 4 an example of our results can be seen. The first 
row shows the results for the loss estimation for the path 
segment before “ M ,  while the second row shows them for 
after “M”. In each column a different version of the 
estimation algorithm is used. The first is the basic algorithm, 
described in section 11. The second and the third are the 
improved algorithms without and with spurious timeout 
detection, respectively. The plots show a heat map 
demonstrating the dependence of the relative error on the file 
size and on the packet loss probability Darker colors stand 
for higher errors. 

It can be seen that the relative error of the basic algorithm 
is below 20% at the majority of the parameter space. It is 
worth noting that although the relative error of the loss ratio 
estimation after “M” can be high at small loss ratios, the 
absolute error may be still low (i.e., a relative error of 5 
stands for a 0.5% absolute loss ratio difference at a loss 
probability ofO.OO1). 

As we look at the graphs from left to right, we can see that 
there are characteristic changes and significant improvements 
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in each step. 
Comparing the graphs on the left with the middle graphs, 

the most important change is that the error of the loss 
estimation before “ M  is almost completely vanished for 
large loss ratios (“Retransmission Problem”, RF’ area in Fig. 
4). This is due to the introduction of the significant set, which 
improved the estimation when there are considerable ;mount 
of multiple or mass losses. We can also note that removing 
the first and the last segment of a TCP connection fiom the 
significant set decreased the estimation error for short files. 
However, the error for extremely short files is still present, 
because a loss before “ M  can be detected only for file sizes 
exceeding two maximum segment sizes (mss). (“Short File 
Problem”, SFP area in Fig. 4). 

The largest error is for the loss ratio estimation aAer “M” 
in case of large files and small loss probabilities, for which 
the left and middle graphs show no improvement. This large 
error is due to retransmissions caused by spurious timeouts. 
When the loss ratio is low, there is a higher probability for 
the congestion window to open up. As a consequence, when a 
spurious timeout occurs, more packets will be retranmitted, 
which increases the estimation error (“Spurious Timeout 
Problem”, STP area in Fig. 4). By removing packets fiom the 
significant set that would indicate consecutive losses, the 
precision of the algorithm can be significantly improved. This 
can be observed on the right bottom graph. An interesting 
phenomenon is that the error resulting from spurious timeouts 
decreases for large files. This can be explained by the fact 
that spurious timeouts tend to occur at the start of a TCP 
connection. When a new connection is opened, TCP has no 
information on the round-trip time, therefore its 

retransmission timeout (RTO) timer may be calculated 
incorrectly. 

Fig. 5 shows the sensitivity of the algorithm to different 
levels of asymmetry of the packet loss probabilities before 
and after “ M .  The values range between 0.1-10%. For the 
investigated file sizes 16 .Kbytes and 200 Kbytes the 
estimation error was negligible for the loss ratio before “M”. 
(This is why only the  results for the  side after “ M  are 
shown.) The loss estimation error is higher if the file size is 
larger, and when the loss probabilities before and after “ M  
differ significantly. The largest error is measured in the 
extreme case when the loss ratio is 10% before “ M  and 0.1% 
after “ M .  

Further tests have been performed for several TCP versions 
(Tahoe, NewReno) and in case of correlated losses. For the 
practically important configurations, the relative error was 
below 10% for 90% of the loss state space. 

v. TESTBED AND ISP RESULTS 

We built a testbed to analyze the algorithm in a controlled, 
hut real environment. The testbed consists of Linux PCs 
interconnected by a 100 Mbps Ethernet hub. Between the 
server and the client hosts, the user can configure the link 
rate, packet delay and random packet loss. We used a 
modified shaper kernel module and the NIST Net 191 program 
to set the desired parameters for the network segments before 
and after the monitoring host. 

The same configuration was tested as we used for the 
simulations. The loss probabilities before “ M  were set 
gradually h m  0.1% to IO%, the loss.afG€ “ M  was set to 
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Fig.5. Relative error o f  the loss estimation for &e path segment after " M  for shon (left) and large (right) files 

0.1% and 10%. The results are summarized in Table 1. The 
results indicate that the loss ratios are estimated quite 
precisely in the testbed as well even for very asymmetric 
cases. 

TABLE I -RUIULlSFROMMETBSTBED~FRESllE LOOKBYIES)  ~- 
I LOSS after"W 0.1 % 1 LOSS after"M I O  % 

1 Loss before I Estimation 1 Estimation I Estimation I Estimation 

Finally, we present results from an ISP network. The 
monitor was placed to the egress point of the ISP network. 
The loss estimation algorithm was used to study the effect of 
upgrading the ISP's Internet access link rate. In Fig. 6, the 
downlink TCP loss ratio before the monitoring point is shown 
for a period of three days before and after the network 
upgrade (each value represents a IO minute average). The 
high estimated packet loss ratios outside the ISP's .domain 

Eefc.. uwrads 
8.0 , 
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Fig. 6. Loss probability in a dial-up ISV network 

indicate the congestion of the ISP's leased line. It can be seen 
that both the average and the peak loss ratio decreased after 
the upgrade of this link. The average loss ratio changed From 
1.31% to 0.55% whereas the peaks lowered from 56% to 2- 
3%. 

VI. CONCLUSION 

We have proposed a passive monitoring based end-to-end 
TCP packet loss estimation algorithm. We introduced the 
notion of significant packet set, which decreases the 
estimation error by only including packets, for which the 
algorithm is able to determine, with high probability, whether 
the packet was lost or not. To improve the accuracy, the 
effects of spurious timeouts, mass losses, load balancing and 
packet reordering are considered. All-round, rigorous 
simulations have been camed out that showed that the 
algorithm is capable of estimating the packet loss ratio with 
high precision for the practically relevant parameter space. 
The algorithm has been implemented and tested in a testbed. 
We have found that the measurement results are consistent 
with the simulations. Finally, we have demonstrated the 
applicability of the algorithm with results from an operational 
ISP network. 
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